一維奈米材料的製程與特性

一維奈米材料所指的是直徑在 100 奈米以下的管狀、線狀或柱狀材料,本文將針對奈米碳 管、SiCN 奈米柱的製程、特性、成分、結構分析等作初步介紹,並概述材料的應用,尤其是 一維奈米材料在場發射、真空電子元件方面的應用作進一步探討。期盼國人能重視奈米材料 的發展,也歡迎年輕一輩加入尖端材料的研究。

陳貴賢、林麗瓊、吳季珍

一、前言

由於工業上的需求與材料製程上的進步,人類 科技已經逐步進入「奈米」(nanometer, nm)的領 域。這個名詞除了代表微細之外,更代表人類對 「實體世界」能掌控的最小單位。在「奈米」的領 域下,物質的許多現象與「巨觀」的物質不同,例 如眾所週知的量子侷限特性(quantum confinement effect)只是其中的一例,由於在奈米的領域下物體 表面的原子數與物體內的原子數相當,物體表面能 也與內部能量相當,許多現象就與巨觀的不同。這 除了表現在光學性質、電性、磁性、機械性質等之 外,還有許許多多現象是仍待發現的,這也是近幾 年來世界各國相繼投入人力、物力研發的主要原 因。

陳貴賢先生為美國哈佛大學應用科學博士,現任中央研 究院原子與分子科學研究所研究員。

林麗瓊小姐為美國哈佛大學應用科學博士,現任國立臺 灣大學凝態科學研究中心研究員。

吴季珍小姐為國立成功大學化學工程博士,現任國立成 功大學化學工程學系助理教授。 在低維奈米材料中,二維的量子井 (quantum wells) 結構在光電元件上已經廣為所用,除了新材 料系統之外,其基本物理現象已經大抵了解了。零 維的量子點 (quantum dots; quantum boxes)則在應用 處理上與塊材類似,也是發展較完全的一種材料。 唯有「一維奈米材料」與「零維材料的二維結構」 是最具挑戰性與發展性的主題,本文將針對「一維 奈米材料」,如奈米碳管、奈米柱狀材料、奈米線 等的製程與特性,作一初步介紹。

二、一維奈米材料的製備

最常見一維奈米材料的製備方法是透過相圖上 的共熔點 (eutectic point,如圖 1 的鎳與碳的相 圖), 鎳與碳的共熔點在 2.2 wt.% 碳及 1318 °C 之 點,透過這個相點及圖 2 所示所謂 VLS (氣液固相) 成長的示意圖,首先將催化劑處理成奈米顆粒,再 導入成長所需氣體,利用圖 1 的共熔相點可以持續 由氣相提供碳源,並經由液相鎳金屬而在低溫端析 出奈米管徑的材料。許多不同的一維奈米材料可以 成長出來,其中最熟知的就是奈米碳管了。本文引 用的 CVD 成長法乃以微波電漿 CVD 為主,其主

圖 1. 鎳與碳的相圖指出於 2.2 wt.% 碳時在 1318 °C 有一共熔點,透過類似的相點,許多不同的 一維奈米材料可以被成長出來。

要設備是 AsTex 5 kW 六吋的反應腔體,其構造示 意圖如圖 3 所示,本機台可以在 3 吋基板上成長 2 吋面積平整的奈米碳管。

1. 奈米碳管之成長

自從 Kroto 與 Smalley 等人發展出 C_{50} 的分子 之後,同一系列的分子奈米碳管也在 1991 年由 Iijima 等發表⁽¹⁾,這種石墨結構的管狀分子可因管 徑、石墨層的層數及石墨層曲捲的方向等不同而導 致各式各樣的奈米碳管。如文獻所述,奈米碳管可 以用 (m, n)兩個 Herlicity 參數來定義其管徑與週期 方向,這兩個參數也決定了奈米碳管的所有特性。 從電子特性的角度來看,我們可以將之分為導體 (m - n = 3q)與半導體 $(m - n \neq 3q)$ 兩種^(2.3)。然而, 雖然奈米碳管的成長非常容易,但是到目前為止沒 有任何方法可以有效控制碳管的管徑、石墨層的層

圖 2. 一維奈米材料 VLS (氣液固相) 成長的示意 圖。首先將催化劑處理成奈米顆粒,再導入 成長所需氣體,利用圖 1 的共熔相點可以持 續析出奈米管徑的材料。

數及石墨層曲捲的方向等,這是一大挑戰也是一個 契機。奈米碳管的尖端多為端蓋所封閉,而端蓋的 形狀也多有變化,這也會影響其物理、化學特性。 部分碳管的尖端會保留催化金屬,這可以由高倍率 電子顯微鏡看出,尤其是圖4所比較的一般掃描式 與反射式電子顯微鏡的影像,可以清楚分辨出金屬 催化劑存在於碳管的底部與尖端。

一般奈米碳管未必是由完美的石墨層捲成,實際上常看到彎曲的碳管。只要在石墨結構中加入五環或七環的結構,碳管就會彎曲,尤其是在製程中加入氮氣,碳管的石墨層就不再平順,許多曲捲的奈米碳管就會出現,這種曲捲狀的奈米碳管的物理特性也非常特別⁽⁴⁾。在高解析度電子顯微鏡之下,我們發現含氮與不含氮的奈米碳管其結構有很大不同。事實上,當奈米碳管有了五環、七環或含有氮、硼等雜質之後,其電子特性就隨著改變,並呈現 *p-n* 接面 (junction)的特性⁽⁵⁾,這就是單一分子電晶體構想的由來。

圖 3. 微波 CVD 機台的示意圖。

製備奈米碳管的方法很多,其成品也都有相當 程度的不同,從早期的電弧放電 (arc discharge)及 雷射蒸鍍等,到一般的化學氣相沈積、sol-gel 等,

本文將介紹本實驗室兩種成長奈米碳管的方法,一為以微波電漿 CVD 法,另一則為結合離子 束濺鍍及 RTP (rapid thermal processing) 來成長奈米 碳管的新方法。兩者都需以一觸媒來誘導奈米碳管 的生成,基本上乃分別遵循 VLS (vapor-liquidsolid)及 SS (solid-solid) 之機制來成長奈米碳管。

(1) 以微波電漿 CVD 法成長奈米碳管陣列

CVD 法為目前一般常用來成長奈米碳管的方法。在本文章中,我們將闡述以微波電漿 CVD 法成長奈米碳管陣列的製程,並探討其場發射性質。

Plain view SE image

Plain view BSE image

圖 4. 一般掃描式與反射式電子顯微鏡的影像比較,反射式的影像可清楚顯示金屬催化劑。

首先利用電子束蒸鍍法將 30 nm 厚的 Co 薄膜蒸鍍 於 2 吋矽晶片上,再利用微波電漿製程,以反應氣 體 CH4、N2 及 H2 流量分別為 20、80 及 80 sccm、 微波電漿功率 1.5 kW、反應壓力 50 Torr、基板溫 度 600 °C、沈積時間則為 20 分鐘的成長條件,可 以均勻的成長如圖 5 所示的平整奈米碳管,其平整 度與平行排列都不錯。當我們利用高解析穿透式電 子顯微鏡 (HRTEM) 分析這些碳管時,發現含氮與 否會造成結構上的不同,如圖 6 所示,比較製程中 含氮與否影響多層奈米碳管的結構,在含氮的氣氛 下,奈米碳管呈竹節狀的結構,而無氮的氣氛下則 呈多層平行管狀,這與我們對氮的鍵結認知一致。 我們進一步結合了上述製程與半導體製程來成 長陣列式奈米碳管,其製造程序如圖 7 所示,先將 1 μm 厚之光阻以旋轉塗佈 (spin coating)方式塗佈 於 p 型矽晶片上,以光微影及蝕刻技術將相互間隔 10 μm、大小為 3 μm 平方的 50 × 50 陣列模型轉移 至矽晶片上。繼以電子束蒸鍍法將 30 nm 厚的 Co 薄膜蒸鍍於此晶片上,將光阻去除後,即製成如圖 7(d) 所示之 Co patterned 矽晶片。最後利用微波電 漿 CVD 於矽晶片上有 Co 薄膜蒸鍍處來成長奈米 碳管,以形成奈米碳管陣列。本方法可以有效重 複、選區成長出排列平整的碳管,無論作場發射、 三極真空元件或是與 TFT 元件結合均有具體成效。

圖 5. 微波 CVD 法成長的奈米碳管,其平整度與平行排列都不錯。

圖 6. 微波 CVD 製程中含氮 (左圖) 與不含氮 (右圖) 對多層奈米碳管結構的影響。

20 nm

圖 7. 奈米碳管陣列的製造程序: (a) 光阻以旋轉塗 佈方式塗佈於 *p* 型矽晶片上; (b) 光微影及蝕 刻技術將陣列模型轉移至矽晶片上; (c) 蒸鍍 Co 薄膜; (d) 以 ACE 去光阻; (e) 於微波電 漿 CVD 系統中成長奈米碳管。

(2) 以離子束濺鍍及 RTP 法成長奈米碳管⁶⁹

本方法主要乃以離子束濺鍍法先沈積含鐵非晶 態碳薄膜,利用含鐵非晶態碳薄膜內之鐵為觸媒, 繼以 RTP 作後續之高溫回火,促使奈米碳管於非 晶態碳薄膜上形成。

沈積含鐵非晶態碳薄膜的離子束濺鍍系統裝置 如圖 8 所示。直徑 3 cm 的 Kaufman-type Ar 離子束 源,以 45°角入射轟擊摻雜有 Fe 線的石墨複合靶 材,而於與靶材平行但距 20 cm 處之 Si 基板上沈 積含鐵非晶態碳薄膜。為避免靶材過熱及促進均勻

圖 8. 離子束濺鍍系統裝置圖。

圖 9. RTP 系統裝置圖。

薄膜的成長, 鍍膜時靶材承載器以 40 rpm 旋轉 之。鍍膜前之系統基壓為 1×10^{-6} Torr, 而鍍膜時 壓力則為 4.5×10^{-4} Torr。另外, 鍍膜時離子束的電 壓及電流則分別設定為 1250 V及 20 mA。

後續之高溫回火乃於 RTP 系統 (M.P.T. RTP-600s) 中執行。此系統如圖 9 所示,乃由一石英外 罩 (quartz jacket) 及分布於其上下方之 30 餘支鹵素 燈管所組成。0.2 μm 含鐵非晶態碳薄膜試片置於 一 4 in Si 晶片上,並利用其下方的一熱電偶來量 測溫度,於 N₂/Ar 氣氛中執行高溫回火處理。以 100 °C/s 之升溫速率將溫度提高至 1000 - 1200 °C 後維持不同回火時間,圖 10 為執行高溫回火以形

圖 11. RTP 1200 °C、N₂ 氣氛下,對含 Fe 非晶態碳膜作回火處理 (a) 0 秒、(b) 15 秒、(c) 30 秒所得試片的 SEM 圖。

成奈米碳管的操作溫度圖。本成長方法所得到的奈 米碳管大都平躺於基板上,且呈現較亂的無方向性 分布,圖 11 為於 RTP 系統中 1200 °C、N₂ 氣氛 下,以不同時間對含 Fe 非晶態碳膜作回火處理所 得試片的 SEM 圖。在此回火條件下,1200 °C 處 理 15 秒後即有奈米碳管的形成,而如圖 11 所示, 奈米碳管的長度及密度隨著回火處理時間之延長而 增加。1200 °C 處理 30 秒後,奈米碳管的平均長度 約為 1 μ m,而密度則約為 10[°] cm⁻²。

圖 12 為以此新方法成長之奈米碳管的高解析 TEM 影像,顯示奈米碳管之內外管徑分別為 15 nm 與 30 nm;而此奈米碳管之特點為,在 20 層石 墨層狀結晶結構之外層乃為非晶態碳的結構。

由圖 13 之 SEM 影像可知,當以 Ar 取代 N₂ 為 回火處理時的 RTP 系統氣氛時,在 1200 °C 下必須 處理 60 秒後才有奈米碳管形成。此結果顯示,於 N₂ 氣氛下有促進奈米碳管形成的功能,然目前對 N₂ 氣氛扮演之角色還並不十分清楚。本法的製程 簡單,可以和特殊製程結合,簡易成長奈米碳管作 為特殊用途。

2. 矽碳氮奈米柱及矽碳氮奈米線之成長

矽碳氮晶體乃一新興材料⁽⁷⁻¹⁰⁾,具有許多優異的特性,如寬能隙及高硬度等,因此其作為藍光及

紫外光光電元件或耐磨耗材料等各方面應用,深具 潛力。而由於一維結構材料,即奈米線(nanowires) 或奈米柱(nanorods),不僅可作為材料的光、電、 磁及機械等物性之於 orderliness、dimensionality 及 size的基礎理論研究,特別就具許多優異物性的矽 碳氮晶體而言,其一維結構具有很大的潛力作為功 能性奈米結構元件及奈米光電元件,如低能消耗奈 米線 LED、場發射元件等用途。因此若能有效地 控制一維矽碳氮奈米柱的成長,將對基礎科學研究

—— 15 μm

圖 12. 以離子束濺鍍及 RTP 法成長奈米碳管的 HR-TEM 圖。

圖 13. RTP 1200 ℃、Ar 氣氛下,對含 Fe 非晶態碳膜作回火處理 (a) 0 秒、(b) 30 秒、(c) 60 秒所得試片的 SEM 圖。

及實際應用皆有非常大的助益。本文介紹的是以一 種兩階段成長法成長矽碳氮奈米柱,其過程中不需 觸媒或 template 的一種特殊方法。

(1) 矽碳氮奈米晶體緩衝薄膜之成長

首先利用電子迴旋共振化學氣相沈積 (electron cyclotron resonance (ECR) plasma chemical vapor deposition)系統來成長矽碳氮奈米晶體薄膜。圖 14 為電子迴旋共振化學氣相沈積系統之示意圖,此系

圖 14. ECR CVD 機台示意圖。

統主要由一直徑 40 公分的反應器、Astex AX211 微波產生器與 AX4400 電磁鐵所組成。基板溫度可 由一 BN 加熱片來單獨控制,而氣體進口則分為兩 處。其一氣體進口環乃位於微波導入之石英玻璃視 窗正下方處,以供點燃 ECR 電漿之氣體 H₂ 及 N₂ 進入反應器;另一則位於基板上方處,反應氣體如 CH₄ 及 SiH₄ 皆由此處導入,以避免石英玻璃被鍍 層覆蓋而影響微波之導入。Si(100) 及 Si(111) 基板 經 HF 及去離子水清洗後,置入 ECR 反應器中。 在 ECR 電漿啟動前,以分子渦輪幫浦將系統之基 壓抽至 1 × 10⁶ Torr,而鍍膜前並先以 H₂ 電漿將基 板表面不純物去除。ECR 電漿成長矽碳氮奈米晶 體緩衝薄膜之沈積參數如表 1 所列。

表 1. ECR 電漿 CVD 法成長矽碳氮奈米晶體緩衝 薄膜之成長條件。

Source	$\mathbf{H}_2 + \mathbf{N}_2 + \mathbf{C}\mathbf{H}_4 + \mathbf{S}\mathbf{i}\mathbf{H}_4$
[H ₂]:[N ₂]:[CH ₄]:[SiH ₄] (sccm)	2.5:2.5:1.0:0.02
Microwave power (W)	1200
Total pressure (mTorr)	3
Substrate temperature (°C)	270 - 900

(2) 矽碳氮奈米柱及奈米線之成長

將表面已於 ECR 電漿 CVD 系統中成長矽碳氮 奈米晶體緩衝薄膜的矽基板,移至圖 3 所示之微波 電漿 CVD 系統中,矽碳氮奈米柱及奈米線之成長 乃於其中執行。在開始製程之前,此微波電漿 CVD 反應器先預抽至 10⁻³ Torr 之基壓,並以 1 kW 的氫電漿先行清理基板表面污染物。而後將不同比 例之 H₂、N₂、SiH₄ 及 CH₄ 氣體混合物導入反應器 中,以 1 至 2.5 kW 之微波功率成長矽碳氮奈米 柱。在此系統中,基板溫度乃以雙波長之紅外線測 溫儀量測之,而基板溫度與其他成長參數如氣體總 流量、氣體組成、反應氣體壓力及微波功率有關。 矽碳氮奈米柱及奈米線之成長參數如表 2 所列。

(3) 矽碳氮奈米柱及奈米線之鑑定與物性量測

上述方法成長之矽碳氮奈米晶粒薄膜及奈米柱 與奈米線的表面型態乃以 Hitachi model S-800 SEM 及 Hitachi model S-5000 Field Emission SEM 觀察 之。奈米柱與奈米線的 EDX 組成分析則以一與 SEM 整合之Oxford ISIS300 光譜儀進行之。而 JEOL model 2010 TEM 則用來進行其晶體結構之高

表 2. 微波電漿 CVD 法成長矽碳氮奈米柱的成長條 件。

Source	$H_2 + N_2 + CH_4 + SiH_4$
[H ₂]:[N ₂]:[CH ₄]:[SiH ₄] (sccm)	80:80:0 - 50:0.4
Microwave power (W)	1 - 2.5
Total pressure (Torr)	25 - 100
Substrate temperature (°C)	950 - 1150

解析電子穿透晶格影像分析。

矽碳氮奈米柱的光電特性分別以 PL 及 PzR 量 測之。以 PL 量測時,使用波長 193 nm 的 ArF 準 分子脈衝式雷射 (excimer pulsed laser) 為光源,量 測試片置於一密閉循環的 He 低溫恆溫器 (cryostat) 中,因此 PL 量測溫度範圍為 10 - 300 K。而以 PzR 量測時,乃將試片黏置於一 lead-zirconatetitanate 壓電換能器 (transducer) 上,並以 200 Hz、 200 V_{ms} 之正弦波驅動之。藉由換能器收縮與膨脹 的改變,造成試片應變 (strain) 的改變,因此應變 改變引發材料的 inter-band transitions 將可被偵測到。

以微波電漿 CVD 法於矽碳氮奈米晶體薄膜上

圖 15.

於矽碳氮奈米晶體緩衝薄膜上 成長之(a)、(b) 矽碳氮奈米 柱;(c) 矽碳氮奈米線;(d) 矽 碳氮奈米及微米晶體。

成長奈米柱之製程參數範圍相當廣,其中最重要之 參數為成長溫度及 CH₄ 氣體進料之比例。如圖 15(a)、(b) 所示,矽碳氮奈米柱可於溫度 950 至 1150 °C、CH₄ 進料流量 0 至 35 sccm 之製程範圍內 成長。當基板溫度低於 950 °C 或 CH₄ 進料流量大 於 45 sccm 時,僅能於矽碳氮奈米晶體薄膜上成長 奈米及微米晶體 (圖 15(d))。而如圖 15(c) 所示,奈 米線可成長範圍則相當窄,僅於基板溫度 1050 °C 及 CH₄ 進料流量 40 sccm 時,可於矽碳氮奈米晶體 薄膜上形成矽碳氮奈米線。圖 16 為溫度及 CH₄ 氣 體流量兩參數之於成長矽碳氮奈米柱及奈米線的製 程範圍關係圖。

如上述, 矽碳氮奈米柱之成長主要由基板溫度 及 CH4 氣體流量兩參數所控制。但奈米柱之密度 及其線徑則與矽碳氮奈米晶體緩衝薄膜的微結構有 相當大的關聯。圖 17 為兩組緩衝薄膜與於該薄膜

圖 16. 溫度及 CH₄ 氣體流量之於成長矽碳氮奈米柱 及奈米線的製程範圍關係圖。

上成長之奈米柱的 SEM 對照圖。圖中兩組緩衝薄 膜乃分別於 ECR 電漿 CVD 系統中以基板溫度 270

圖 17.

緩衝薄膜 (a)、(c) 與於該薄膜 上成長之奈米柱 (b)、(d) 的 SEM 對照圖。((a) 與 (b);(c) 與 (d))。 °C 及 640 °C 沈積而得。在 ECR 電漿 CVD 系統中 沈積的矽碳氮薄膜的特性為,薄膜中奈米晶體的密 度隨基板溫度提高而增加,但奈米晶體的大小則維 持於 20 nm,不隨沈積溫度變化。於低溫 270 °C 沈積的緩衝層主要為非晶態薄膜,其上有些許奈米 晶體聚集形成的 cluster, 如圖 17(a) 所示。而於 640 °C 沈積所得的緩衝層, 如圖 17(c) 所示, 奈米 晶體則幾乎佈滿了薄膜表面。由圖 17 可知,於微 波電漿 CVD 系統中,以相同成長參數、不同緩衝 層成長奈米柱的密度與緩衝層奈米晶體的密度有密 切的關聯。相較於低奈米晶體密度緩衝層者,於高 奈米晶體密度的緩衝層上可得高密度的奈米柱。而 圖 17(b) 及 (d) 亦顯示,不論於奈米晶體密度高或 低之緩衝層上成長的奈米柱,其線徑大小皆與奈米 晶體大小相近。因此,由此 SEM 圖的比較清楚顯 示,緩衝層上奈米晶體的密度及大小對於奈米柱的 密度及線徑大小有決定性的影響。此外,由此兩階 段成長之奈米柱,其線徑大小並不隨奈米柱長度之 增加而有變化。就其長度變化平均而言, 奈米柱的 成長速率約為 0.25 μm。另外, 由圖 18 的 SEM 影 像可清楚觀察,密度高(~10¹⁰ cm⁻²)之奈米柱具有 沿其長軸與基板垂直的 quasi-aligned 之特性, 奈米 柱沿其長軸方向成長之角度與基板法線成 15°。

緩衝層上奈米晶體對成長奈米柱的重要影響, 可由圖 19 之 TEM 影像更進一步證實。圖 19(a) TEM 橫截面清楚顯示奈米柱與緩衝層上奈米晶體

圖 18. Quasi-aligned 之奈米柱。

的關聯。雖然以 ECR 電漿 CVD 系統沈積之緩衝 層,乃由非結晶態的矽碳氮薄膜上鑲有奈米晶粒所 組成,如圖 19(a)所示,但奈米柱僅於緩衝層上的 奈米晶粒處成長。亦即已是結晶態的奈米晶粒可作 為矽碳氮奈米柱成長的晶種,在第二階段的微波電

圖 19.

(a) 奈米柱於緩衝層上成長之 TEM 橫截面影像;(b)、(c) 分 別為奈米柱於平行與垂直長軸 方向的高解析 TEM 晶格影像 及其繞射圖形。 漿系統中,藉由適當的製程參數如成長溫度及 CH₄ 流量等的控制,使得矽碳氮晶體的成長朝向一優選 方向,而形成高深寬比 (aspect ratio) 且具良好六方 晶面型態的奈米柱。圖 19(b) 及 (c) 分別為這些直 奈米柱於平行與垂直長軸方向的高解析 TEM 晶格 影像及其繞射圖形。由垂直長軸方向的繞射圖形可 知矽碳氮奈米柱於該方向為六方 (hexagonal) 對 稱,而平行長軸方向者則顯示奈米柱具 twofold 對 稱之特性。

如圖 20 所示,由 PL 量測得之,矽碳氮奈米 柱在室溫時於 4.2 eV 處具有一寬廣且強度高的螢 光特性峰。進一步由變溫量測實驗觀察而知,隨著 溫度降低,此放射特性峰具有藍位移 (blue shift)的 現象。而 PzR 光譜量測的結果與 PL 光譜相呼應, 如圖 20 左上方插圖所示,此矽碳氮奈米柱在室溫 時具有 4.2 eV 的直接能隙大小。此與 α -Si₃N₄ 之 4.8 eV 及 Si₃₅C₂₆N₃₉ 之 3.81 eV 皆有所差異,顯示矽 碳氮材料之能隙大小與組成及晶體結構有關,然而 其中之關聯性尚待釐清。

除了奈米碳管與矽碳氮奈米柱之外,本研究小 組也研究金屬奈米柱狀材料與 GaN、InN 等奈米 線,請參照本期陳家俊教授的介紹。

三、一維奈米材料的特性應用

一維奈米材料有許多特性是其他材料所沒有

插圖)。

的,所以衍生出許多想像不到的應用,還有許多仍 待開發中。以奈米碳管為例,因為特殊的幾何結 構,使其成為最佳的 AFM 碳針。利用單層奈米碳 管作成的 AFM 碳針可以得到更精密的表面構造, 並可利用其在奈米區域作選擇性氧化的工作⁽¹¹⁾。奈 米碳管的儲氫作用是眾所期盼的,因為其結構與石 墨類似,又有其特出之處,所以成為一研究焦點。 過去也有多篇論文報導其儲氫能力高達五至數十 %⁽¹²⁻¹⁵⁾,雖然上述報導均出現在一流的刊物上,但 是經不起科學的考驗,在 2000 年的 MRS Fall Meeting 上許多實驗室都收回原來的報導,目前奈 米碳管的儲氫能力僅於幾 % 以下。至於石墨的另 一應用 鋰電池電極 則仍待探討中。因為奈米碳 管層與層的間距和石墨的間距稍有不同,所以具有 優於石墨的潛力,日本信州大學的遠藤教授在這方 面有長期的研究(16,17)。

利用奈米碳管作生化方面的偵測與標示等是一 大發展方向,利用奈米碳管及 C₆₀ 的衍生物作藥物 傳送或與基因工程相關工作等都極具開發潛力。另 外,因為奈米態碳管極特殊的機械特性,其強度遠 超過一般材料,所以其在複合材料的應用就成了焦 點,加上碳管導電的特性,奈米碳管的應用潛力遠 超出一般想像。本文將針對一維奈米材料的場發射 效應作較深入探討。場發射性質的量測乃利用一平 板式電極裝置之真空 I-V 量測系統 (如圖 21 所示) 進行之。量測時將試片置於陰極處,與 ITO 玻璃 陽極相距 30 μ m;在 1 × 10⁻⁷ Torr 真空度及室溫 下,以 Keithely 237 供應電壓並量測試片的場發射

圖 21. 真空場發射性質量測系統裝置圖。

電流。為了避免試片邊緣因結構效應而造成電場分 布不均之現象,因此設計 ITO 玻璃陽極的面積較 試片小,以將該效應降至最低。

奈米碳管陣列之場發射特性^(18,19)
圖 22(a) 及 (b) 為奈米碳管陣列的光學影像及

圖 22. (a) 奈米碳管陣列光學影像; (b) 奈米碳管 SEM 圖。

圖 23. 奈米碳管陣列()與鍍 p-doped()、Bdoped()及 undoped()鑽石的 Si tip 陣列 的場發射 I-V 特性圖。

時所需之電場) 分別為 15.5、18.6 及 16.7 V/μm, 而其門限 (threshold) 電場 (定義為達到 10 mA/cm² 時所需之電場) 分別為 22.3、30 及 33.6 V/μm。然 就奈米碳管陣列而言,啟動電場及門限電場則分別 為 5.8 - 7.7 及 9.4 - 11.3 V/μm,比鍍鑽石的 Si tip 陣列者降低許多,顯示奈米碳管陣列具有較佳之場 發射特性。

雖然奈米碳管具有優異的場發射電子特性,但 是其均勻度及穩定度都是問題。因為製程無法完全 掌控,造成碳管的結構、管徑、長度不一。在場發 射過程中只有一小部份碳管發射,所以在 ITO 陽 極上看起來是星空狀的不均勻亮點,如果要用來作

圖 25. 奈米碳管在三極電子源中的 SEM 圖,上圖 的間距維 18.5 mm,下圖則為 10.3 mm。

為顯示器,則其均勻度有待改善。當我們長時間觀 察碳管的場發射現象時,也常見到這些亮點閃爍跳 動,這代表有些碳管被破壞了,其他的碳管又接續 下去。所以其穩定度也是一個不容忽視的問題。尤 其是當碳管被用於平面顯示器時,局部的亮度不均 勻會造成影像的失真,其顯示效果就大打折扣。

為了解決上述的問題,我們嘗試兩種不同的方 法。首先我們引用三極 (triode) 的構想⁽²⁰⁾,利用矽 晶蝕刻技術,在矽基板上蝕刻一定寬度與深度的凹 槽,然後如圖 24 所示,在凹槽中鍍上一層金屬催 化劑,再將基板送入微波 CVD 成長奈米碳管於特 定的區域。如此成長的碳管就像圖 25 所示,相當 平整排列的奈米碳管可以在凹槽中成長,其碳管頂 端與凹槽頂部的距離可以控制。如圖 24(e),將一 柵極覆蓋於基板表面之後,就可以作為三極電流

圖 26.圖 25 之三極場發射電子源的特性圖。

圖 27. 三極場發射電子源之穩定度圖。

TFT 控制奈米碳管場發射電子 源之製作流程圖。

圖 28.

源。所量測到的特性如圖 26 所示,其場發射電流 特性與碳管的高度有極大關係。這個方法的電流穩 定度並沒有改善,如圖 27 所示,其長時間的操作 發現電流有 20% 的不穩度,這在許多元件的應用 上是無法接受的。雖然如此,這個實驗證實了奈米 碳管在三極應用的可行性,如此一來,過去真空管

圖 29. TFT 控制奈米碳管場發射電子源之特性量測 圖。

的時代可能因為新的場發射材料而復活,這將是一個極具潛力的領域。

為了要有效控制場發射電流的穩定度,我們利 用當今常用的 TFT 薄膜電晶體與奈米碳管結合成 為 TFT-CNT 的電子源⁽²¹⁾,其製作流程如圖 28 所 示。基本上,我們利用 TFT 製程中鍍膜、照光、 蝕刻、自動對準等步驟,並將金屬催化劑選區鍍在 TFT 的汲極上,然後將基板送到微波 CVD 中成長 奈米碳管,如此得到的奈米碳管可以精確成長在汲 極上。其場發射特性量測如圖 29 所示,我們用兩

圖 30. TFT 控制奈米碳管場發射電子源之電流特性 圖。

圖 31.TFT 控制奈米碳管場發射電子源之電流穩定 性比較圖。

組電源控制 / 量測器分別控制 TFT 與 CNT 場發 射。圖 30 為 TFT-CNT 的場發射特性圖,隨著電流 的升高到某一電流值時,其電流就受到 TFT 的限 制,所以奈米碳管只負責將電子發射出去,而電流 的大小交給 TFT 來管,在 TFT 飽和電流區操作, 可以得到極穩定的電流。這種方法的優點可以從圖 31 證實,圖中比較沒有 TFT-CNT 控制的電流特 性,顯現出 20% 的不穩定度,當我們用 TFT 控制 之後,其不穩定度降到 5% 以下,而且其長時間操 作看不到任何降低的現象。可見 TFT-CNT 的方法 確實可以解決奈米碳管在應用上的種種難題,將奈 米碳管的應用向前邁一大步。

這個方法最大的特點是可以結合 TFT 技術應 用於平面顯示器上, 仿效 TFT-LCD 的構想, 將每 一個像素 (pixel) 以一個場發射奈米態管源取代, 尤其本實驗室的奈米碳管可以在 350 °C 成長, 可 以承接 TFT 玻璃基板的要求, 將是一個很有發展 潛力的方向。

2. 矽碳氮奈米柱的場發射特性(22,23)

矽碳氮奈米柱也具有優異的場發射特性。圖 32 為典型矽碳氮奈米柱試片的場發射特性。由此 圖可知,當施加的電場到達 36.7 V/μm 時,矽碳氮 奈米柱試片的場發射電流密度可達 1 mA/cm²,而 啟動電場 (通常定義為達到 10 μA/cm² 時所需之電 場)為 10 V/μm。良好的場發射材料除了需具有低 啟動電場之特性外,穩定度亦為另一重要之性質。

圖 32.SiCN 奈米柱之場發射電子特性及其穩定性 圖。

矽碳氮奈米柱試片的長時間場發射特性測試顯示, 當一外加的電場使試片發射電流密度達 100 μA/cm² 之後,經8小時測試,如圖 32子圖所示,發射電 流密度並無嚴重震盪及衰退(於 ±10% 之內)的現 象,因為矽碳氮奈米柱的結構上是較堅固的實心柱 體,其承受電流下的穩定度也較奈米碳管高,唯其 場發射所需之電壓較高,其應用性將受限制。

四、結論

一維奈米材料無論在基礎特性、成長方法與實際應用各方面都處於初步發展的階段,本文僅就作 者研究所及作一片面介紹,事實上還有許多不同的 材料系統、更多的應用等待大家去開發,這就驗證 了當年費因曼所言「在這奈米的『小』世界裡還有 非常『大』發展的空間」,因為那些領域是人類從 來沒有到過的,以此和讀者共勉。

誌謝

作者要感謝臺灣大學陳永芳教授、張志雄同 學、臺北科技大學林炳和同學、交通大學鄭晃忠教 授、詹台富國、宏偉凱、陳國基同學、中正理工學 院馬廣仁教授、王春田同學的實驗數據與國科會、 中油公司、中研院、教育部卓越計畫的之助。

參考文獻

- 1. S. Iijima, Nature, 354, 56 (1991).
- 2. C. Dekker et al., Nature, 391, 59 (1998).
- 3. C. Lieber et al., Nature, 391, 62 (1998).
- 4. L. Pan et al., Jpn. J. Appl. Phys., 40, L235 (2001).
- 5. C. Dekker et al., Nature, 393, 49 (1998).
- 6. K. H. Chen et al., Diamond & Related Materials (in press, 2001).
- 7. L. C. Chen et al., Diamond and Related Materials, 5, 514 (1996).

- 8. Y. S. Huang et al., Phys. Rev., B 56, 6498 (1997).
- 9. K. H. Chen et al., J. Mater. Res., 12, 322 (1997).
- 10. L. C. Chen et al., Appl. Phys. Lett., 72, 2463 (1998).
- 11. S. Gwo et al., Appl. Phys. Lett., 76, 360 (2000).
- 12. A. C. Dillon et al., Nature, **386**, 377 (1997).
- 13. Y. Ye et al., Appl. Phys. Lett., 74, 2307 (1999).
- 14. A. Chambers et al., J. Phys. Chem. B, 122, 4253 (1998).
- 15. C. Liu et al., Science, 286, 1127 (1999).
- 16. M. Endo et al., J. Phys. Chem. Solids, 57, 725 (1996).
- 17. M. Endo et al., Carbon, 38, 183 (2000).
- 18. F. G. Tarntair et al., J. Vac. Sci. Tech. B, 18, 1207 (2000).
- 19. P. D. Kichambare et al., J. Vac. Sci. Tech. B, 18, 2722 (2000).
- 20. H. C. Chang, W. K. Hong et al., J. Appl. Phys. (submitted, 2001).
- 21. L. C. Chen,, W. K. Hong et al., Appl. Phys. Lett. (submitted, 2001).
- 22. K. H. Chen, J. J. Wu, and L. C. Chen *et al.*, *Diamond & Related Materials*, **9**, 1249 (2000).
- 23. F. G. Tarntair et al., Appl. Phys. Lett., 76, 2630 (2000).