寬頻顯微光譜儀開發及校正

Developing A Broadband Microspectrophotometer and Its Calibration

翁俊仁、劉達人、林郁欣 Chun-Jen Weng, Da-Ren Liu, Yu-Hsin Lin

隨著微奈米光學科技之發展,各種微奈米元件或薄膜被開發出來,研究人員常面臨容易設計並製作,而卻 無法微觀檢測的窘境當中。微奈米光學元件的光學特性常與材質選擇、結構形狀及尺寸大小有相關性,以 一般顯微鏡僅有影像定性分析並無光譜定量資訊,亦無法進行偏振相關特性之定量量測功能。顯微光譜儀 可用於微奈米元件之量測應用,然目前大多由美國、德國、日本以及韓國所掌握,不僅設備單價昂貴,且 不具備偏振功能,其量測寬頻也常受限於可見光波段。因此,目前缺乏一個通用具偏振解析以及寬頻顯微 光譜量測儀器平台,本研究開發寬頻顯微光譜儀開發及校正。本套系統將具備 400 nm-700 nm 之量測頻 寬,且具備偏振解析功能。

Commercial spectroscopic ellipsometer and polarimeter cannot characterize the properties of the micro-nano structures because of the poor resolution and lower magnification. In this study, we propose to combine the microscope and microspectrophotometer(MSP) to measure the optical polarization in ultra-broadband wavelength range (400 nm-1700 nm). We developed a broadband MSP. This MSP can measure characterization for micro-nano structures in the range of 400 nm-1700 nm. It will be an advance instrument for frontier researches such as chiral metamaterials, plasmonics, micro polarization optics and bio optics.

一、前言

近來微奈米光學元件製程之精進與研究學者 之創意實現,各式各樣讓人驚艷的微奈米光學元 件被開發並深入研究探討,已成功應用在日常生 活當中,由於節能減碳的發展趨勢及優質生活的 期待,近來研究學者著重於綠色材料研究、元件 效率提昇、高解析高頻寬之光電調變、虛擬實境 等等,經適當設計之微奈米技術可以滿足以上之 趨勢與期待。近來微奈米技術應用的重要研究課 題,例如應用於 3D 電視應用之圖案式微相位波片 (micro retarder)⁽¹⁾、應用於高品質取像技術之微偏 振片 (micro polarizer)⁽²⁾、超高速光子計算及高容量 之電漿子元件⁽³⁾、高效率太陽能與 LED 之表面增 效元件⁽⁴⁾、完美透鏡與隱形斗篷應用之超穎物質⁽⁵⁾ 以及生物醫學應用之檢測技術 (bio optics)⁽⁶⁾等,都 是國內外許多前瞻團隊所積極開發與研究之標的, 本研究團隊也積極投入這些領域。從表面電漿子震 盪 (surface plasmon resonance) 的研究開始,具有高 濃度自由電子 (或電洞) 及位移電流 (displacement current) 的物質受外加光作用時,其受外加光照射 的特殊表現為近幾十年來現代光子學研究重點,研 究更導引出後續超穎物質 (metamaterial) 的進展, 近來超穎物質的發展重點已朝向具有不對稱特性 的手性 (chirality) 結構發展,手性超穎物質 (chiral metamaterial) 是當下國外尖端學術團隊研究重要標 的(7-10),台灣亦有幾個重要團隊投入此塊之研究。 然而上述之微奈米光學物質由於樣本之獨特性與多 樣性,此類樣本常具有偏振相關特性 (polarization dependence),包含線性偏振以及旋光偏振特性, 例如線性二色性 (Linear Dichoism, LD)、圓二色 性 (Circular Dichoism, CD)、線性雙折射(Linear Birefringence, LB) 以及旋光雙折射 (Circular Birefringence, CB) 等。微奈米技術乃是目前各國爭 相競爭掌握之關鍵技術,主要因其可以對人類的生 活產生重大改變,尤其當今面臨能源短缺、綠能環 保意識高漲以及優質生活之期待,微奈米技術提供 了一個無限可能的研究空間,然所製作的微奈米光 學元件,卻面臨可以設計並製作,然而卻常面臨無 法完整檢測的窘境當中,微奈米元件的特性迄今尚 未完全掌握,加上微奈米加工技術尚未臻於完美, 造成設計與製作有很大的容差問題,必須高度仰賴 儀器量測的回饋而作設計與製作修正參考之依據。 微奈米光學元件的光學特性常與材質選擇、結構形 狀及尺寸大小有相關性,例如特徵波長、色散曲線 以及吸收或共振波長,另外微奈米光學物質也常 對於不同偏振狀態之入射光會有不同響應,然而 一般建置之量測技術,大都屬於單波長或窄頻的 量測方式,亦缺乏偏振特性量測機制,無法進行 寬頻以及偏振特性之檢測。在一般的塊材 (bulk) 寬 頻偏振量測的技術,包含商用光譜式橢圓偏光術 (spectroscopic ellisometry)、光譜式反射率量測儀 (spectral reflectometer) 及光譜式膜厚量測技術 (thin film thickness measurement systems), 此類技術都已 有成熟之商用儀器可供量測分析,然而此類商用儀 器受限於量測尺度為釐米至公分 (mm-cm) 等級無 法用於微奈米尺度之光學元件之量測,因此一般微 奈米光學元件通常常藉由高解析度之顯微鏡或近場 光學顯微鏡來觀測,然而上述之微奈米尺度光學元 件具備不同之偏振相關性,以一般顯微鏡僅有影像 定性分析並無光譜定量資訊,亦無法進行偏振相關 特性之定量量測,另外一般商用光譜式橢圓偏光術 或光譜式偏光量測技術又缺乏微奈米尺度定位、顯 微放大之功能,因此需開發可以同時結合顯微鏡以 及光譜式偏光量測技術,來進行微奈米尺度光學元 件寬頻偏振特性量測。一般而言,利用光學的方式 以非破壞性及非接觸性量測光學參數可分為兩大 類,即強度型量測與相位型量測。前者是量測入射 光及反射光的強度比,由所得的反射率等參數進一 步地分析待測物的相關光學參數;而後者則是量測 干涉信號的相位,並且由相位與待測物的光學參數 之間的關係可得到相對應的光學參數。強度型量測 雖然容易受到背景光強度變化的影響造成量測準確 度下降,然若使用功率回授控制 (feedback control) 之寬頻光源,不僅頻寬可涵蓋可見光至近紅外光坡 段,穩定度也可以控制於 0.5% 以內,因此配合顯 微光譜儀之架構,不僅可量測樣品之反射率甚至亦 可以由絕對反射率來精準推得折射率之分佈。隨著 微奈米光學科技之發展,各種微奈米尺度光學元件 之製作、加工技術蓬勃發展,各式樣的微奈米尺度 之光學元件或薄膜被開發出來,然而卻缺乏一個通 用之顯微量測儀器平台,此塊研究空缺剛好正是本 研究所需扮演之角色與任務。本研究計畫則是希望 開發寬頻顯微光譜儀,結合自製寬頻顯微光譜儀、 開發寬頻切換偏振產生與解析單元、以及人機界面 整合,此套儀器不僅可以進行高解析顯微影像定性 觀測,同時具備樣品之顯微偏振光譜定量訊號量 測,成為前瞻儀器量測系統。量測頻寬方面,目前 發展重心以 400 nm-1700 nm 為主, 待技術發展 成熟將會進一步往紫外光顯微光譜發展,以拓展更 多生醫以及高階半導體之應用。

二、文獻之評述

隨著微奈米科技的蓬勃發展,各領域所研究 的元件或材料樣本尺寸越來越小,欲量測樣本之 光譜量測區域的大小已由原先釐米公分尺度之區 域,下探至微米等級 (100 μm-1 μm),所對應 之量測儀器已由原先的簡單光源搭配傳統光譜儀 (spectrometer),而進階發展出所謂的顯微光譜技

術,目前所發展之顯微光譜技術,主要可分為兩 類,其一為結合顯微鏡光路收光而送至光譜儀中, 稱為顯微光譜儀 (microspectrophotometer), 此種儀 器其最小空間解析度微米等級 (通常 > 1 µm),另 一類為近場光譜顯微術 (Near-field spectroscopy), 通常探討之空間解析度小於繞射極限,約為次微 米至奈米等級。本研究討論之範圍以顯微光譜儀 為主,概念上基本上就是顯微鏡搭配商用光譜儀 及相關光路之整合,可將量測的區域為縮至微米 等級,可以量測微奈米尺度之樣本,可即時觀 測影像及光譜之變化,不僅具備光譜的量測定 量之量測,還保有顯微鏡的影像定性觀測,針 對不同之應用,可分為色度式顯微光譜儀 (Color microspectrophotometer)、穿透式顯微光譜儀 (Transmission microspectrophotometer)、反射式顯 微光譜儀 (Reflectance microspectrophotometer)、螢 光顯微光譜儀 (Fluorescence microspectrophotometer) 、顯微拉曼光譜儀 (Raman microspectrophotometer)。

顯微光譜儀具備微奈米尺度定位、顯微放大之 功能,可同時定性觀測影像以及定量量測光譜資 訊,因此實務應用相當廣泛與深具潛力,包含微奈 米科學、顯示器相關、鑑識科學之應用、生醫或生 化應用、顯示器產業之色彩光譜分析、太陽能產業 薄膜量測、LED/OLED 色彩分析、生醫產業之定 量分析、材料分析、手機微鏡片量測以及半導體製 程參數監控等等,整理文獻之應用於表1中,然而 一般顯微光譜儀大都由國外廠商掌握,除價格壟斷 非常昂貴外,缺點包含其頻寬無法橫跨可見光波段 及近紅外波段,通常需要兩套設備獨立操作,且截 至目前為止,仍不具備完整之偏振量測功能,無法 包含寬頻線性偏振及旋光偏振之解析功能,另外亦 無法提供準確的絕對反射率之量測。

本研究經搜尋各種文獻上之資料,目前的發展 趨勢,原本是使用商用顯微鏡搭配外接式光譜儀, 如圖 1(a)所示為 J&M 公司的架構圖⁽¹¹⁾,係透過光 路機構 (relay lens)再轉接於光纖導光後送至光譜 儀;另外的發展趨勢係直接將分光光路直接整合於 顯微鏡中,例如圖 1(b)、圖 1(c)所示,為了減少 損耗因此光學架構簡單化,透過光圈選取控制選 取之顯微光譜區域, CRAIC 公司發展之架構⁽¹²⁾, 使用 Czerny-Turner 光譜分光架構,透過第一個凹 面鏡準直後,經過平面光柵 (planner grating)分光 後,再由第二面凹面鏡聚焦於線型感測器 (linear sensor array),經由後續電路處理顯示光譜分光資 訊。Olympus 公司發展架構⁽¹³⁾,與 CRAIC 公司類 似,其中直接使用平場凹面光柵 (flat-field concave

表 1. 整理文獻顯微光譜之相關應用。

微奈米科學	Surface Plasmon Resonance (SPR and LSPR), Nanoparticles, Photonic crystals, Carbon nanotubes, Diamond-like films, Microscale characterization of nuclear fuel cladding, Micro-contaminant identification, Micro-fluidic device development
顯示器相關	Mura, Sub-pixel colorimetry, Chromaticity, Color mapping of displays, Intensity mapping of displays, Microspot film thickness, Micro-display development, OLED, Micro-LED
鑑識科學之應用	UV-visible-NIR spectra of fibers and dyed hair and paint layers, Colorimetry, spectra and refractive index of glass fragments, Spectroscopy of soil, gemstones, questioned documents, currency
生醫或生化應用	Identifying Protein Crystals, Identifying DNA Crystals, Feulgen DNA analysis, Identifying RNA Crystals, Pharmaceutical quality control, Active ingredient dispersal mapping, Micro-fluidic device development
其他特殊應用	Vitrinite reflectance, Kerogen analysis, Petroleum source rock analysis, Fluorescence spectroscopy of minerals, Luminescence spectroscopy of minerals, Dye and pigment analysis of paintngs, Clearcoat spectroscopy of paintings, Dye identification on textiles

圖 1. 主要顯微光譜儀公司所開發之顯微光譜儀架構, (a) J&M 公司, (b) CRAIC公司及 (c) OLYMPUS 公司。

grating) 分光後聚焦於線型感測器,將光學元件數 目再減少。然而這三家公司的架構,雖已減少許 多元件而降低許多光譜強度之損耗,若要涵蓋 400 nm-1600 nm 寬頻需求,通常需要兩套線型感測 器,其一為 Si 之線型感測器,用來感測 400 nm-1000 nm,另一為 InGaAs 之線型感測器,來涵蓋 1000 nm-1600 nm。『輕、薄、短、小與多?能 性』之品質需求為現今各類型儀器發展所追求的目 標之一,效率的提升與在有效空間內植入更多?能 性為主要訴求,然而所有商用顯微光譜儀發展到目 前為止,並不具備寬頻完整偏振功能之定量量測功 能,亦無法量測絕對反射率乃至於折射率之量測。

圖 2. 本研究所開發之顯微光譜儀架構圖。

三、系統架設及原理

圖 2 為本研究之實驗架構圖,其基本架構主 要是基於 Zeiss 商用顯微鏡之改裝,其中測量波段 可覆蓋從 360 nm 至 1700 nm。功率為 100 瓦的鹵 素燈光束經聚焦通過帶通濾波片 (bandpass filters, FWHM~10 nm) 由準直透鏡準直後,再經由一個寬 頻複消色差 (apochromatically VIS-NIR) 顯微鏡物 鏡 (Zeiss, EC Epiplan-Apochromat $10 \times /20 \times /50 \times$, N.A. = 0.25/0.6/0.95)) 聚焦於待測樣品上。顯微 光譜儀同時具備寬頻光譜之量測能力以及高解析 影像之功能,鹵素燈光束經聚焦通過共聚焦針孔 (pinhole) 由準直透鏡準直後,再經由一個寬頻複消 色差顯微鏡物鏡聚焦於待測樣品上,從待測樣品反 射之光束再被物鏡收集,然後耦合到收光導光光纖 之核芯中,再傳輸至熱致冷卻 (TE-cooling) 之寬頻 光譜儀 (spectrometer) 之中來分析樣品穿透或反射 光譜強度,此光譜儀模組具有 33,000:1 之高動態 對比 (high dynamic range) 且具備 16 位元之數位類 比轉換器 (A/D converter)。本套寬頻偏振顯微光譜 儀具備高動態對比之光譜信號以及 CCD 影像擷取 之功能,因此特別適合做精準穿透或反射光譜之數 據分析,例如測量待測樣品之寬頻穿透率、反射率 以及折射率,可同時包含影像及光譜之量測。其系 統詳細相關規格,整理於表2當中。

四、顯微光譜穿透率以及反射率校正

針對顯微光譜儀前進行光譜校正,確定光譜收 光系統之波長數據正確性,使用寬頻光源搭配校正 過之單光儀進行連續波長掃描測試,如圖4所示, 測試數據顯示在可見光波段是落在2nm左右,近

圖 3. 本研究開發之顯微光譜儀架構實體照片圖。

表 2. 寬頻微光譜量測系統規格表。

項目	規格	說明
顯微鏡光路	光路適用波長:360-1700 nm 物鏡:10X/20X/36X/50X 量測最小區域: 10μm	亦可無物鏡式進行量測,適用大尺寸元 件之量測。
顯微光譜模組	光譜範圍: 200-1700 nm 光譜解析: 2 nm @ 632 nm 4 nm @ 1300 nm Slit: 25 μm 動態對比: 33,000 (16bits)	雙光譜接續 400-1100 nm 1000-1700 nm
顯微影像	顯微影像: 360 nm-1100nm 動態對比: 6,000 (16 bits)	

圖 4. 使用寬頻光源搭配單光儀進行共焦顯微光譜儀波長校正。

紅外波段落在 4 nm, 這些誤差都在可見光與近紅 外光光譜儀解析度的誤差範圍內。

在穿透光譜與反射光譜量測校正程序當中, 將本研究發展之顯微光譜儀與一台商用分光光 譜儀量測系統 (PerkinElmer spectrometer Lambda 900) 進行量測比對,此套商用機台已經過 TAF (Taiwan Accreditation Foundation) 認證過,可以保 證在 400 nm-1700 nm 的量測範圍內,穿透光譜 與反射光譜可見光誤差都不超過 1%,但由於量 測範圍須涵蓋 1 cm × 1 cm 以上 (受限於量測光束 尺寸),因此屬於大範圍巨觀之量測 (macroscopic measurement),因而無法用於微奈米光學元件之檢 測,而本研究所開發之顯微光譜儀則可以透過不 同放大倍率之物鏡來選取量測區域,屬於微觀量 測(microscopic measurement)。顯微鏡之收光光譜 的量測信號與測試光源、顯微光路之光學元件有相 關性,若要求量得單純樣本的光譜特性,則可借助 於穿透率(Transmission, T%)、反射率(Reflection, R%)之量測校正來達成,透過(100-T-R)%則可得 到消散光譜(extinction spectrum,通常含有吸收及 散射光成分,量測穿透率T,只需將經過樣本之光 強度 I_{Isample} 除上未經樣本之光強度 I₀ 即可求出(亦 即以空氣當參考):

$$T(\%) = \frac{I_{Tsample}}{I_0} \times 100\% \tag{1}$$

然而量測反射率則必須有已知反射率之參考樣 本做為參考,一般光譜常使用使用 SiO₂ 薄膜做為 參考片,本研究在可見光波段使用在矽基板 (該基 板通常會有一層很薄的 SiO₂),其標準反射率 R_{SiO2} 作為已知數據 (此為理論模擬數值),數據整理於圖 5 所示。

原始入射光強為 I_0 ,首先量測樣本之反射光譜 信號 $I_{Rsample}$,再量測參考樣本 SiO_2 之相對反射訊 號 $ISiO_2$,兩者相除再乘上已知反射率 R_{SiO_2} 之標準 反射因子,即可獲得待測樣本之反射率 R_{Sample} 。

$$R_{\rm SiO_2} = \frac{I_{\rm SiO_2}}{I_0} \tag{2}$$

$$R_{Sample} = \frac{I_{Rsample}}{I_0} \tag{3}$$

$$R_{Sample}(\%) = \frac{I_{Rsample}}{I_{SiO_2}} \times R_{SiO_2} \times 100\%$$
(4)

另外可進行後續數據處理,即可量得消散光譜 (extinction spectrum),消散率 *Asample* (%)可表示 為:

$$A_{Sample}(\%) = (100\% - T_{sample} - R_{sample})$$
 (5)

為方便快速了解量測流程,將上述之穿透率、 反射率以及消散率之量測步驟整理於量測流程圖 6 當中,其中必須特別注意樣本之對焦,尤其乾淨或 透明的物質並不容易聚焦,因此樣本必須刻一個輔 助對焦用的對準圖案 (alignment key)。

五、實驗數據與討論

實驗部分我們在矽基板上成長 228 nm 厚度之 SiO₂,一般適合應於低於 1000 nm 波段之反射率參 考,然而矽基板在近紅外波段之後將呈現透明狀 態,因此由於會有第二面之反射光以及多重反射光 造成反射率量測誤差,如圖7所示,因此本研究發 展測試各式樣的標準測試片,來選擇適合本套顯微 光譜之反射率校正片,如圖 8 所示,以 TAF 認證 之分光光譜儀量測系統 (PerkinElmer spectrometer Lambda 900) 進行量測各式樣的標準反射率測試 片,包含自製抛光黑色玻璃 (blackglass)、鋁鏡 (Al mirror)、5103 高反射率鏡、10d20 高反射率 鏡、BB-1 介電膜高反射率鏡片、金鏡 (PF-10-03 Au) 以及銀鏡 (PF-10-P01 Ag)。為了避免偏振相關 (polarization dependent) 之特性,因此最後選用三 種校正片做為本系統之反射率校正片,其一為銀鏡 用以校正高反射率之樣品,另一為黑色玻璃用以校

圖 5. 以矽基板參考鏡片之反射率分布。

圖 6. 顯微光譜穿透率以及反射率量測流程圖。

正低反射率之樣品,而為了量測絕對反射率以推得 折射率,亦使用在 400 nm-1700 nm 之波長範圍 內,折射率都已熟知之融化石英玻璃 (fused silica) 作為反射率校正片。

在穿透光譜與反射光譜量測校正當中,首先使 用塊材 (bulk material) 以及薄膜來進行顯微光譜與 商用分光量測系統之量測比對工作,理論上塊材與 薄膜若均匀,則兩套系統量測數據應該要一樣, 在塊材量測比對當中,使用鍍膜專用玻璃 B270 以 及商用低反射率標準片 SSL 作為兩套儀器的測試 樣品,其中鍍膜專用玻璃 B270 由於在此寬頻量測 範圍幾乎沒有任何吸收,因此其穿透率維持 接近 92% 的高穿透率,如圖 9 所示,兩套量測系統的 量測數據相當接近,差異不超過 1%。一般而言, 量測反射光譜誤差會較大,在反射光譜量測部分, 分別使用 B270 以及商規標準反射鏡片 SSL 樣本來

圖 7. 矽基板上成長 228 nm 厚度之 SiO₂ 薄膜之寬 頻反射率理論值及實驗值。

比對兩套系統之性能,量測數據如圖 10 所示,兩 個樣本在寬頻的量測範圍內,反射率都相當低,兩 套系統所量得的反射光譜差別亦不超過 1%。為了 進一步驗證顯微光譜系統的量測穩定度以及高倍率 物鏡下之量測誤差,因而設計對於入射角度更為 敏感的測試樣本:多層膜高反射率濾片,來測試不 同倍率物鏡下顯微光譜的量測性能,本濾波片基板 為 B270 係由 11 組 Ta₂O₅ 與 SiO₂ 交織推疊而成的 薄膜,此濾片係設計對於 430-520 nm 波段是高

反射率、其他波段則是震盪曲線,兩套系統量測 之穿透光譜如圖 11 所示,其中顯微光譜系統量測 當中,分別使用 10X/20X/36X 物鏡,所代表的量 測圓形區域之直徑分別為 50/25/14 µm,由數據可 以看出在 10X/20X/36X 物鏡下,顯微光譜的量測 皆與商用 TAF 分光光譜量測系統接近;另外亦進 行反射光譜之量測,量測數據如圖 12 所示,顯微 光譜的量測亦皆與商用 TAF 分光光譜量測系統接 近。由此可知本套顯微光譜量測系統,經光路最佳 化後以及適當校正下,寬頻的量測準確度可以媲美

圖 9. 顯微光譜儀與 TAF 分光光譜儀量測玻璃 B270 之穿透率比較。

圖 11. 顯微光譜儀與 TAF 分光光譜儀量測多層膜高反射率濾片之穿透率比較。

商用 TAF 標準的分光光譜量測系統,並且保有快速量測之優點 (量測時間通常可在幾分鐘內即可完成)。

除了以上述光學元件進行系統之校正及功能 測試外,我們也量測下列幾種微奈米結構樣本, 來分析其顯微偏振光譜之性能,實驗結果整理如 圖 13 所示。以下針對兩種樣品進行說明,其一為 3 color LCD 之μRGB filter 以及蝴蝶翅膀之鱗片結 構。首先,μRGB filter 濾波陣列元件,係由商用 LCD 面板的主要元件,由台灣廠商所提供。其主 要結構如圖 13 所示,其中微型彩色濾光片的大小 為 75μm×50μm。由圖可以看出其 R pixel 有點偏

圖 12. 顯微光譜儀與 TAF 分光光譜儀量測多層膜高反射率濾片之反射率比較。

黃色彩,而 G pixel 有點偏淡綠色, B pixel 有點偏 淡藍色,亦即 RGB 的色彩座標都偏移了,因此由 此元件所構成的 LCD 面板,其視覺效果較差。然 由影像我們只能定性描述,無法明確定量。透過我 們所開發之顯微光譜儀,則可就寬頻光譜進行定量 分析。使用 10X 物鏡來進行量測,取訊號之光點 大小約為 45 µm 的,剛好可以單就 1 pixel 進行量 測分析而不會與鄰近 pixel 干擾。量測結果如圖之 穿透光譜所示,顯微 µRGB 彩色濾色片的曲線峰 值分別是 630nm/525nm/483nm, 其 3 dB 頻寬分別 為 150nm/105nm/96nm。顯而易見地, R pixel 有最 大之頻寬,然而3個RGB pixels 都可以穿透近紅 外光之部分,因此若為追求可見光最佳性能表現, 應加入一個 NIR filter。另外 G pixel 與 B pixel,其 光譜波段明顯重疊於 500 nm 附近,這個波長的色 彩是偏藍綠光。綜合上述,以上就是造成 RGB 的 色彩偏移的主要因素。若能在製作時,引入即時顯 微光譜量測,即可以線上監控色彩飄移之問題。另 一個舉例之樣品,則是來自於國內知名光電團隊所 提供藍尾彩蝶,這是一種台灣特有原生種,其表面 具有特殊鱗片結構,而且每一鱗片又具有周期性排 列之微奈米尺度晶體結構,由於此種特殊結構,讓 此種蝴蝶具有迷人的藍紫色,十分鮮艷。該團隊想 以自然為師,觀察此種蝴蝶翅膀,進一步開發人 造之光子晶體結構,來操控色彩之分布。然而如 圖 13 中顯示之鱗片微奈米尺度晶體結構,受限於 量測工具之解析度無法提升,不易獲得擇區量測之 顯微光譜數據,而藉由我們開發之寬頻顯微偏振光 譜系統,則可進行此種結構之顯微光譜量測,並可 分析不同偏振及旋光狀態下之特性。我們使用小孔 徑光纖搭顯微光譜模組,具有 5 µm 解析的微光譜 量測能力,量測實驗數據如圖 13 所示,明顯在不 同區域其光譜強度略有不同,然而主要反射峰約在 400 nm 及 470 nm,這就是此種蝴蝶具有藍紫光及 藍綠光之色彩分布之原因。

六、結論

本研究論文主要敘述顯微光譜儀之背景說明及 相關文獻探討,並提出本研究之動機,除了介紹顯 微光譜儀的基本原理,也說明如何將一般可見光之 量測波段擴展成為橫跨 400 nm 至 1700 nm 之寬頻 波段。目前也積極與國內外先進團隊合作開發先進 微奈米光學元件,並透過本套系統進行完整定量分 析,並積極服務學術界與產業界進行前瞻之研發, 提升國內微奈米技術之精進。

圖 13. 本研究服務國內學術團隊量測之各種樣品數據整理。

誌謝

本研究承蒙科技部經費補助 (MOST 107-2221-E-492 -024 -MY3&MOST 106-2622-E-492-004 -CC3),使本計畫得以順利進行,特此致上感謝之 意。另外,也感謝本單位多位同仁張鮮文、陳智 偉、卓文浩、王太申、吳柏勳提供的協助與相關資 料,在此一併感謝。

參考文獻

- 1. Z. Marcet et al., Appl. Phys. Lett., 98, 151107 (2011).
- Junpeng Guo and David Brady, *Applied Optics*, **39** (10), 1486 (2000).
- 3. Mark I. Stockman, Phys. Rev. Lett. 93, 137404 (2004).
- 4. Yiyu Ou et al., Optics Express, 19, 166 (2011).
- 5. J. B. Pendry, Phys. Rev. Lett., 85, 3966 (2000).
- 6. Wenshan Cai et al., Nature Photonics 1, 224 (2007).
- In Hee, Shin Sang-Mo, Shin Dug, Young Kim, Journal of Biomedical Optics, 15 (1), 016028 (2010).
- 8. Shuang Zhang et al., Phys. Rev. Lett., 102, 023901 (2009).
- 9. Do-Hoon Kwon, Pingjuan L. Werner, and Douglas H. Werner, *Optics Express*, **16** (16), 11802 (2008).
- 10. Wei Ting Chen et al., Appl. Phys. Lett., 98 (17), 171106 (2011).
- 11. J&M公司, http://www.j-m.de/
- 12. CRAIC公司, http://www.microspectra.com/
- 13. Olympus公司, http://www.olympus-global.com/en/

翁俊仁先生為國立交通大學光電工程 研究所博士,現為國家實驗研究院儀 器科技研究中心研究員兼任光學儀器 小組長。

Chun-Jen Weng received his Ph.D. in

electro-optical engineering from National Chiao Tung University. He is currently a research fellow at Instrument Technology Research Center, NARLabs.

劉達人先生為國立台灣大學物理研究 所博士,現為國家實驗研究院儀器科 技研究中心研究員兼任影像分析小組 長。

Da-Ren Liu received his Ph.D. in

physics from National Taiwan University. He is currently a research fellow at Instrument Technology Research Center, NARLabs.

林郁欣先生為國立交通大學機械工程 博士,現為國家實驗研究院儀器科技 研究中心副研究員。

Yu-Hsin Lin received his Ph.D. in mechanical engineering from National

Chiao Tung University. He is currently an associate researcher at Instrument Technology Research Center, NARLabs.